43 return (x & 0x7fffffffffffffffULL);
74 unsigned long long ll;
90 0x0000000000000000ULL,
91 0x3fc65717fced55c1ULL,
92 0x3fd65717fced55c1ULL,
93 0x3fe0c151fdb20051ULL,
94 0x3fe65717fced55c1ULL,
95 0x3febecddfc28ab31ULL,
96 0x3ff0c151fdb20051ULL,
97 0x3ff38c34fd4fab09ULL,
98 0x3ff65717fced55c1ULL,
99 0x3ff921fafc8b0079ULL,
100 0x3ffbecddfc28ab31ULL,
101 0x3ffeb7c0fbc655e9ULL,
102 0x4000c151fdb20051ULL,
103 0x400226c37d80d5adULL,
104 0x40038c34fd4fab09ULL,
105 0x4004f1a67d1e8065ULL,
106 0x40065717fced55c1ULL,
107 0x4007bc897cbc2b1dULL,
108 0x400921fafc8b0079ULL,
109 0x400a876c7c59d5d5ULL,
110 0x400becddfc28ab31ULL,
111 0x400d524f7bf7808dULL,
112 0x400eb7c0fbc655e9ULL,
113 0x40100e993dca95a3ULL,
114 0x4010c151fdb20051ULL,
115 0x4011740abd996affULL,
116 0x401226c37d80d5adULL,
117 0x4012d97c3d68405bULL,
118 0x40138c34fd4fab09ULL,
119 0x40143eedbd3715b7ULL,
120 0x4014f1a67d1e8065ULL,
121 0x4015a45f3d05eb13ULL,
122 0x40165717fced55c1ULL,
123 0x401709d0bcd4c06fULL,
124 0x4017bc897cbc2b1dULL,
125 0x40186f423ca395cbULL
129 0x0000000000000000ULL,
130 0x3fc63a1a335aadcdULL,
131 0x3fd5e3a82b09bf3eULL,
132 0x3fdfffff91f9aa91ULL,
133 0x3fe491b716c242e3ULL,
134 0x3fe8836f672614a6ULL,
135 0x3febb67ac40b2bedULL,
136 0x3fee11f6127e28adULL,
137 0x3fef838b6adffac0ULL,
138 0x3fefffffe1cbd7aaULL,
139 0x3fef838bb0147989ULL,
140 0x3fee11f692d962b4ULL,
141 0x3febb67b77c0142dULL,
142 0x3fe883709d4ea869ULL,
143 0x3fe491b81d72d8e8ULL,
144 0x3fe00000ea5f43c8ULL,
145 0x3fd5e3aa4e0590c5ULL,
146 0x3fc63a1d2189552cULL,
147 0x3ea6aedffc454b91ULL,
148 0xbfc63a1444ddb37cULL,
149 0xbfd5e3a4e68f8f3eULL,
150 0xbfdffffd494cf96bULL,
151 0xbfe491b61cb9a3d3ULL,
152 0xbfe8836eb2dcf815ULL,
153 0xbfebb67a740aae32ULL,
154 0xbfee11f5912d2157ULL,
155 0xbfef838b1ac64afcULL,
156 0xbfefffffc2e5dc8fULL,
157 0xbfef838b5ea2e7eaULL,
158 0xbfee11f7112dae27ULL,
159 0xbfebb67c2c31cb4aULL,
160 0xbfe883716e6fd781ULL,
161 0xbfe491b9cd1b5d56ULL,
162 0xbfe000021d0ca30dULL,
163 0xbfd5e3ad0a69caf7ULL,
164 0xbfc63a23c48863ddULL
173 for (i = 0; i <
N; i++)
177 main_result += (result !=
test_out[i]);
180 (
"input=%016llx expected=%016llx output=%016llx (%lf)\n",
183 printf (
"%d\n", main_result);
float64 float64_div(float64 a, float64 b)
flag float64_ge(float64 a, float64 b)
float64 int32_to_float64(int32 a)
float64 float64_mul(float64 a, float64 b)
float64 float64_add(float64 a, float64 b)
float64 local_sin(float64 rad)
const float64 test_out[N]
double ullong_to_double(unsigned long long x)
unsigned long long float64
float64 float64_abs(float64 x)
float64 float64_neg(float64 x)
x
Return the smallest n such that 2^n >= _x.